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Abstract

The geometric mean of positive definite matrices is usually identified
with the Karcher mean which verifies all properties –inspired by the scalar
case– a geometric mean is expected to satisfy. Unfortunately, the Karcher
mean is typically not structure preserving, and destroys, e.g., Toeplitz
and band structures, which emerge in many applications. For this reason,
the Karcher mean is not always recommended for modeling averages of
structured matrices. In this article a new definition of a geometric mean
for structured matrices is introduced, its properties are outlined, algo-
rithms for its computation, and numerical experiments are provided. In
the Toeplitz case an existing mean based on the Kähler metric is analyzed
for comparison.

1 Introduction

The wish to generalize the concept of a geometric mean to positive definite (pos-
itive for short) matrices and, on the other hand, the need to average quantities
expressed by positive matrices in certain applications have led to the definition
and the study of the Karcher mean [6, 7, 27].

Without describing all facets, one can consider the set of n × n positive
matrices, denoted by Pn, as a manifold [1], in particular, there is a smooth

map from Pn to Rn2

. In each point of X ∈ Pn one can define the tangent
space TXPn which can be identified with the space of Hermitian matrices. The
Karcher mean can now be defined in terms of a Riemannian geometry defined
on Pn and induced by the inner product

gA(X,Y ) := tr
(
A−1XA−1Y

)
, X, Y ∈ TAPn (1.1)
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on the tangent space TAPn. This inner product gA makes Pn a complete Rie-
mannian manifold with non-positive curvature and yields the following distance
between two matrices X,Y ∈ Pn:

δ(X,Y ) =

(
n∑
k=1

log2 λk

)1/2

, (1.2)

where λ1, . . . , λn, are the eigenvalues of X−1Y , which are positive numbers (for
all the proofs see [6, Ch. 6]). The Karcher mean of a set of m positive matrices,
A1, . . . , Am ∈ Pn, is defined as the unique positive minimizer G(A1, . . . , Am) of
the function

f(X;A1, . . . , Am) :=

m∑
j=1

δ2(X,Aj). (1.3)

Since this mean minimizes the sum of squared intrinsic distances to each of the
matrices Aj it is a barycenter of these matrices with respect to the aforemen-
tioned metric.

An important quality of the Karcher mean is that it verifies all the properties
desired by a geometric mean, like the ten Ando-Li-Mathias (ALM) axioms [2].
For this reason, it is a viable tool in applications requiring some of these prop-
erties [5, 28]. A geometric mean should for instance be: permutation invariant,
monotone, joint concave, and should satisfy the arithmetic-geometric-harmonic
inequality (see [2] for the precise statements of the properties). In particular,
one of the most characterizing properties of a geometric mean is its invariance
under inversion:

G(A−1
1 , . . . , A−1

m ) = G(A1, . . . , Am)−1. (1.4)

Prior to having the proofs of all the properties of the Karcher mean, some of
which very elusive [25], other definitions of a matrix geometric mean had been
proposed [2, 8, 11, 29], even if nowadays there is large agreement in considering
the Karcher mean as the “right” matrix geometric mean.

In certain applications, however, besides the positive definiteness, the data
matrices have some further structure in the sense that they belong to some
special subset S, say a linear space. For instance, in the design and analysis
of certain radar systems, the matrices to be averaged are correlation matrices,
which are positive Toeplitz matrices [24]. In these cases, one would like the
geometric mean to belong to the same class S as the data. Unfortunately, the
Karcher mean does not preserve many structures, in particular the Karcher
mean of Toeplitz and/or band matrices is typically not of Toeplitz and/or band
form anymore, as illustrated by the following simple example.

Example 1.1. Let S be the set of tridiagonal Toeplitz matrices and choose
A1, A2 ∈ S where A1 = I, and A2 = tridiag(1, 2, 1) being the matrix with 2’s
on the main, and 1’s appearing on sub- and superdiagonals. We have A1A2 =
A2A1, thus the Karcher mean equals (A1A2)1/2. For n = 3 we get

(A1A2)1/2 =

√
2

4
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 (1.5)

which is neither tridiagonal nor Toeplitz.
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In this paper we introduce the concept of a structured geometric mean of
positive matrices in such a way that if A1, . . . , Am ∈ S also their mean belongs
to S. Given a subset S of Pn and matrices A1, . . . , Am ∈ S, we say that G ∈ S
is a structured geometric mean with respect to S of A1, . . . , An if the function
f(X;A1, . . . , Am) of (1.3) takes its minimum value over S at G. The set of
the structured geometric means of A1, . . . , Am with respect to S is denoted by
GS = GS(A1, . . . , Am).

We show that if S is closed then GS is nonempty and the matrices G ∈ GS
satisfy most of the ALM axioms, in a suitably adjusted form, for instance, the
invariance under inversion property (1.4) turns into

GS(A1, . . . , Am) = GS−1

(
A−1

1 , . . . , A−1
m

)−1
,

where for a set U ⊆ Pn we denote U−1 = {X−1 : X ∈ U}. That is, the inverse
of any structured geometric mean of the matrices A1, . . . , Am ∈ S with respect
to S coincides with a structured mean of the inverses A−1

1 , . . . , A−1
m with respect

to the set S−1 where these inverses reside.
Moreover, we show that, in many interesting cases, structured geometric

means can be characterized in terms of the positive solutions of a suitable vector
equation and provide algorithms for their computation.

In the Toeplitz case we also consider a different approach, where the mean
is defined as a barycenter for a suitable metric on the manifold [4]. We analyze
this barycenter and its properties in detail, obtaining an explicit expression in
the real case and a quick algorithm in the complex case.

The article is organized as follows. In Section 2 the cost function (1.3) is
examined with special focus on the existence of the minimizer over a closed set.
The structured matrix mean itself is the subject of study in Section 3, where
the theoretical properties it should satisfy are examined. Section 4 proposes two
algorithms for computing a structured mean G in a linear space together with
their convergence analysis. For one algorithm, it is shown that the convergence
speed is independent of the condition number of the mean and is faster when the

condition numbers of the matrices A
−1/2
i GA

−1/2
i are smaller, for i = 1, . . . , n.

Because of its nature and its convergence properties, this algorithm can be
viewed as the natural extension to the structured case of the Richardson-like
algorithm introduced and analyzed in [10] for the computation of the Karcher
mean of unstructured matrices. In Section 5, for Toeplitz matrices, a different
structured matrix mean [4] as a barycenter is considered, and an algorithm for
computing it is developed. Section 6 shows numerical experiments related to
accuracy and speed for computing the structured matrix mean.

Here we recall some basic notation and properties that will be used in the
rest of the paper. Given a matrix A, we define σ(A) the spectrum of A, that is,
the set of all the eigenvalues of A, and ρ(A) = maxλ∈σ(A) |λ| the spectral radius

of A. Moreover we denote by ‖A‖F := (trace(A∗A))1/2 = (
∑
i,j |aij |2)1/2 the

Euclidean (Frobenius) norm of A, and ‖A‖2 = ρ(A∗A)1/2 the spectral norm. By
A∗ we denote the transposed conjugate of A. Recall that for a positive matrix
A there exists a unique positive solution to the equation X2 = A. This solution,
denoted by A1/2, is called the square root of A [6]. Given a matrix A ∈ Cn×n, we

use the vec-operator to build vec(A) ∈ Cn2

, a long vector obtained by stacking
the columns of A. We will use the Kronecker product ⊗ such that A⊗B is the
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block matrix whose (i, j)th block is defined as aijB. The vec operator and the
Kronecker product interplay in the following way [20]

vec(ABC) = (CT ⊗A) vec(B). (1.6)

Finally, we recall a natural partial order in Pn that will be used in the following:
let A and B be positive, we write A > B if the matrix A − B is semidefinite
positive.

2 Existence of structured geometric means

In this section the existence of a structured geometric mean and its relation to
the classical Karcher mean is studied. First some necessities are repeated.

2.1 Uniqueness of the Karcher mean for positive matrices

The Riemannian geometry on Pn given by the inner product (1.1) turns out to
be complete and a parametrization of the geodesic joining two positive matrices
A and B is known to be [6]

A#tB = A1/2
(
A−1/2BA−1/2

)t
A1/2 = A

(
A−1B

)t
, t ∈ [0, 1], (2.1)

where the midpoint A#1/2B coincides with the geometric mean of two matrices
[21].

Given a set of matricesA1, . . . , Am ∈ Pn, the function f(X) = f(X;A1, . . . , Am)
in (1.3) is strictly geodesically convex, which means that for any two different
matrices X,Y ∈ Pn, we have

f(X#tY ) < (1− t)f(X) + tf(Y ) 0 < t < 1. (2.2)

This property follows from [6, Exercise 6.1.13], where it is stated that for m = 1
the function f(X) is strictly geodesically convex. The case m > 1 follows by
summing up the m inequalities obtained by applying (2.2) to the functions
f(X) = f(X;Ai), for i = 1, . . . ,m, respectively.

Geodesical convexity is a key ingredient for the proof of the existence of
a unique minimizer of f over Pn given in [6, Ch. 6]. A different proof is
obtained using the fact that Pn, with the inner product (1.1), forms a Cartan-
Hadamard manifold [14, 26], which is a Riemannian manifold, complete, sim-
ply connected and has non-positive sectional curvature everywhere. On such a
Cartan-Hadamard manifolds the Karcher mean (the so-called center-of-mass) is
unique [15,23].

The notion of geodesical convexity in Pn is different from the customary
convexity in the Euclidean space where one requires that

f((1− t)X + tY ) 6 (1− t)f(X) + tf(Y ), t ∈ [0, 1].

In fact, the function f is not convex in the traditional sense as the following
example shows.

Example 2.1. Consider the set made of the unique matrix A = 1, and x, y ∈
R∗+ = P1. We have f(x) = δ2(x,A) = log2(x) which is not convex. On the
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other hand the function log2(x) is strictly geodesically convex and this can be
shown by an elementary argument: in fact, it is continuous and

δ2(
√
xy, 1) = log2(

√
xy) =

1

4

(
log2 x+ log2 y + 2 log x log y

)
=

1

2

(
log2 x+ log2 y

)
− 1

4
(log x− log y)

2

<
1

2

(
log2 x+ log2 y

)
=

1

2

(
δ2(x, 1) + δ2(y, 1)

)
.

Iterative selection of midpoints, by using midpoints and a continuity argument
completes the proof.

Since f is strictly geodesically convex, it can be proved that it has a unique
minimizer over any geodesically convex subset S of Pn, where we say that a
subset S ⊆ Pn is geodesically convex if for any X,Y ∈ S, the entire geodesic
X#tY , t ∈ [0, 1] belongs to S. In fact, by absurd, if X1 and X2 were two
different matrices in S where f takes its minimum, then from (2.2) it would
follow that f(X1#tX2) < f(X1) = f(X2) for any 0 < t < 1 which contradicts
the assumption.

2.2 Existence of structured geometric means on a closed
set

For a generic closed subset U of Pn which is not necessarily geodesically convex,
we can prove the existence of a minimum point by using the fact that f(X) is
continuous. In order to prove this, we first give a couple of preliminary results.

Lemma 2.2. Let A,X, Y ∈ Pn be such that Y = A−1/2XA−1/2. Then for any
operator norm it holds that∥∥Y ∥∥ >

∥∥X∥∥/∥∥A1/2
∥∥2
,
∥∥Y −1

∥∥ >
∥∥X−1

∥∥/∥∥A−1/2
∥∥2
.

Proof. The condition Y = A−1/2XA−1/2 can be rewritten as X = A1/2Y A1/2.

Taking norms yields
∥∥X∥∥ 6

∥∥A1/2
∥∥2∥∥Y ∥∥ from which the first inequality follows.

The second inequality holds similarly starting from Y −1 = A1/2X−1A1/2.

Lemma 2.3. For the function δ2(X,A) it holds that

δ2(X,A) > log2 s

where s = max
{
ρ
(
A−1/2XA−1/2

)
, ρ
(
A1/2X−1A1/2

)}
.

Proof. It follows from the equation

δ2(X,A) =
∑
i

log2 λi

(
A−1/2XA−1/2

)
.

Since all terms are positive,
∑
i log2 λi(A

−1/2XA−1/2) is greater than any single
term in the summation, in particular those given by the extreme eigenvalues of
A−1/2XA−1/2, that is, ρ

(
A−1/2XA−1/2

)
and 1/ρ

(
A1/2X−1A1/2

)
.
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We are now ready to prove the main result of this section.

Theorem 2.4. Let U ⊆ Pn be a closed subset. Then for any A1, . . . , Am ∈ Pn
the function f(X) = f(X;A1, . . . , Am) has a minimum in U .

Proof. If U is bounded, then it is compact and the continuous function f(X)
has a minimum in it, so we may assume that U is unbounded. Let t > 0 and
At = {X ∈ Pn : ‖X‖2 6 t, ‖X−1‖2 6 t}, such that At is closed and bounded.
We claim that there exists a sufficiently large value t such that outside the set
U ∩ At the function f(X) takes values larger than γ = infX∈U f(X). In this
way, the set where we minimize the function can be restricted to U ∩ At which
is compact and hence f(X) takes its minimum over it. For simplicity, we prove
the existence of t for m = 1. The case m > 1 can be obtained by using the same
arguments.

Combining Lemma 2.2 with ‖ · ‖ = ‖ · ‖2, Lemma 2.3, and using the prop-
erties of the spectral norm, we find that there exist positive constants α and β
(depending on A) such that

δ2(X,A) > max
{

log2 (α‖X‖2) , log2
(
β‖X−1‖2

)}
(2.3)

for anyX ∈ Pn. Choosing t sufficiently large in such a way that log2(αt), log2(βt) >
γ, it follows from (2.3) that δ2(X,A) > γ for any X having ‖X‖2 > t or
‖X−1‖2 > t. This completes the proof of the existence of a minimum of f(X,A).
Considering the summation in (1.3) this generalizes to an arbitrary f(X).

In general, uniqueness of the point where f(X) takes its minimum cannot be
guaranteed. For instance, if both A and A−1 belong to U while I = A#1/2A

−1

does not, then the function f1(X) := δ2(X,A)+δ2(X,A−1) reaches its minimum
at a point G 6= I ∈ U . Clearly, f1(G−1) = f1(G) and if G−1 6= G belongs to U ,
then we have at least two distinct points of minimum. A more concrete example
is the following.

Example 2.5. Consider the 2× 2 matrices A = I and B =

[
a 0
0 a−1

]
, where

a > 1. Define the segment U = {G(t) = A+ t(B −A), t ∈ [0, 1]} which is
closed and convex, but not geodesically convex. The function f(t) = δ2(G(t), A)+
δ2(G(t), B) takes the form f(t) = log2((1−t)/a+t)+log2(a(1−t)+t)+log2((1−
t)+t/a)+log2((1−t)+at) and is symmetric with respect to t = 1/2. For a = 200
the function has the graph shown in Figure 1 with a local maximum at t = 1/2
and two global minima close to the edges of the segment.

3 A theoretical exploration of the structured ge-
ometric mean

In this section we discuss the relation between the structured and generic ge-
ometric mean, together with the adaptation of the generic properties to the
structured setting. We will discuss just the real case, so in this section, the
set Pn stands for the manifold of real positive definite matrices whose tangent
space is the set of real and symmetric matrices.
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Figure 1: Graph of f(t) = δ2(G(t), A) + δ2(G(t), B) for G(t) = A + t(B − A)
with A = I and B = diag(200, 1/200).

3.1 The geometric and structured geometric mean rela-
tion

The properties shown in Section 2 imply that a structured geometric mean
with respect to U , as defined in the introduction, always exists for any closed
subset U of Pn. In particular, this holds in the cases where U = S ∩ Pn for
any linear space S of matrices S and also for U−1 := S−1 ∩ Pn where S−1 ={
A−1 : A ∈ S,detA 6= 0

}
. This captures a wide class of interesting structures

emerging in applications, e.g., Toeplitz and band matrices, as well as their
inverses. For simplicity we will restrict our analysis in the remainder of the
article to the real case.

More general structures are given in terms of a parametrization σ(t) : V →
Rn×n, with σ a differentiable function defined in the open subset V of Rq,
which we will call the parameter space. The set T = σ(Rq) is the structure
determined by σ. If σ is linear and V = Rq, then T is a linear space. Examples
of sets T of interest which generally do not form a linear space are the set of
matrices with a given displacement rank [9], the set of semiseparable [33], and
quasiseparable matrices [17]. For an n×n symmetric Toeplitz matrix, a possible
parametrization is given by

σ(t) = σ([t0, t1, . . . , tn−1]) =


t0 t1 . . . tn−1

t1
. . .

. . .
...

...
. . .

. . . t1
tn−1 . . . t1 t0

 . (3.1)

For a band matrix, one can, e.g., just store the nonzero-elements in a long vector
and map them onto their exact locations. In the following, given a closed set T
we let U = T ∩ Pn.

In Example 2.5 we illustrated that the minimum of the cost function re-
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stricted to a closed subset U ⊆ Pn is not necessarily unique. For this rea-
son, we consider the structured geometric mean GU = GU (A1, . . . , Am) of
A1, . . . , Am ∈ U , as the set of matrices in U where the function f(X) attains
its minimum. Formally speaking, for A1, . . . , Am ∈ U , let g ∈ Rq be such that
Ĝ = σ(g) ∈ GU (A1, . . . , Am), then

f(σ(g);A1, . . . , Am) = min
t∈Rq

f(σ(t);A1, . . . , Am).

Since U ⊆ Pn, the minimum over Pn is less than or equal to the minimum over
U . In general it will often happen that Ĝ 6= G(A1, . . . , Am) like in (1.5).

3.2 Properties of the geometric mean conveyed to the
structured mean setting

Some desired properties from a matrix geometric mean were stated by Ando, Li
and Mathias in [2], of which the most noticeable are enlisted here.

Consistency with scalars If A1, . . . , Am commute, then

G(A1, . . . , Am) = (A1 · · ·Am)1/m.

Permutation invariance For any permutation π of {1, . . . , k}, it holds that

G(A1, . . . , Am) = G
(
Aπ(1), . . . , Aπ(m)

)
.

Joint homogeneity

G(α1A1, α2A2, . . . , αmAm) = (α1 · · ·αm)1/mG(A1, . . . , Am).

Monotonicity If Ai > A′i, for i = 1, . . . , k, then

G(A1, . . . , Am) > G(A′1, . . . , A
′
m).

Invariance under congruence For any nonsingular M ,

G(M∗A1M, . . . ,M∗AmM) = M∗G(A1, . . . , Am)M.

Invariance under inversion

G(A1, . . . , Am)−1 = G(A−1
1 , . . . , A−1

m ).

Arithmetic-geometric-harmonic mean inequality

1

m
(A1 + · · ·+Am) > G(A1, . . . , Am) > m

(
A−1

1 + · · ·+A−1
m

)−1
.

Yet another property naturally desired from a geometric mean, but not re-
quired in the list of Ando, Li and Mathias, is the repetition invariance, that is,
for any set of positive matrices A1, . . . , Am ∈ Pn, it holds that

G(A1, . . . , Am, A1, . . . , Am) = G(A1, . . . , Am). (3.2)
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Now, we consider the properties of the structured geometric mean. Some
properties such as the permutation invariance trivially hold, others should be
restated. In fact, in the generic case the structures we consider, are not invariant
under inversion nor under congruence. That is because if A ∈ U then it need
not necessarily hold that A−1 ∈ U nor M∗AM ∈ U .

We start with the invariance under inversion as this is one of the most char-
acterizing properties of the geometric mean. To this end we consider the set
T −1 =

{
T−1 : T ∈ T , detT 6= 0

}
parametrized with the function σ−1(t) :=

σ(t)−1. Clearly, the intersection U of T with Pn yields always invertible matri-
ces, so that T −1 ∩ Pn = U−1.

According to our definition, the structured geometric mean ofA−1
1 , . . . , A−1

m ∈
U−1 is given by the set GU−1(A−1

1 , . . . , A−1
m ). For any G̃ ∈ GU−1 , we have

G̃ = σ(g̃)−1 such that

f
(
σ (g̃)

−1
;A−1

1 , . . . , A−1
m

)
= min
t∈Rq

f
(
σ(t)−1;A−1

1 , . . . , A−1
m

)
.

Since δ(A,B) = δ
(
A−1, B−1

)
, one gets f(X;A1, . . . , Am) = f

(
X−1;A−1

1 , . . . , A−1
m

)
so that

f (σ(g̃);A1, . . . , Am) = min
t∈Rq

f (σ(t);A1, . . . , Am)

and thus G̃−1 ∈ GU (A1, . . . , Am). Since G̃ was chosen arbitrarily, and since U
can be interchanged with U−1, we have the analogous of the invariance under
inversion for the structured geometric mean:

GU (A1, . . . , Am)−1 = GU−1

(
A−1

1 , . . . , A−1
m

)
. (3.3)

In a similar manner we can restate the invariance under congruence in a
structured style by defining, for any nonsingular M the set UM := M∗UM =
{M∗TM : T ∈ U}. The invariance under congruence is then understood as

GUM (M∗A1M, . . . ,M∗AmM) = M∗GU (A1, . . . , Am)M

which holds true.
Joint homogeneity, in order to be defined, requires that the set T satisfies

the following property:
A ∈ T ⇒ αA ∈ T

for any scalar α > 0. This property clearly holds if T is a linear space or the set
formed by the inverses of the nonsingular matrices of a linear space. For these
sets, the joint homogeneity holds.

Repetition invariance holds true as well by (1.3), since

f(X;A1, . . . , Am, A1, . . . , Am) = 2f(X;A1, . . . , Am),

so the minimizers (over a subset) of the functions f(X;A1, . . . , Am, A1, . . . , Am)
and f(X;A1, . . . , Am) are the same.

Regarding the remaining properties, we observe that the consistency with
scalars is not verified, as Example 1.1 shows. Nevertheless, weaker consistency
properties hold, as idempotency, namely GU (A,A, . . . , A) = A for each structure
U and A ∈ U . Moreover, if the set U is geodesically convex then

GU (A1, . . . , Am) = G(A1, . . . , Am),
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so the geometric and structured geometric mean coincide. An interesting case
of geodesically convex set is given by U = T ∩ Pn, when T is an algebra, i.e., a
linear space closed under multiplication and inversion.

Finally, the properties related to the ordering of positive matrices such as
monotonicity are not true as shown by the following numerical example.

Example 3.1. We consider the four Toeplitz matrices

T1 =

 1 1/2 1/2
1/2 1 1/2
1/2 1/2 1

 , T2 = T1, T3 =

3/4 1/2 0
1/2 3/4 1/2
0 1/2 3/4

 , S =

1 0 1
0 1 0
1 0 1

 ,
and, using the algorithms presented in the next sections, we compute a struc-
tured geometric mean Gε of the three matrices T1, T2 and T3 + εS for various
ε > 0. The norm of Gε−G0 becomes small as ε tends to 0 and we observe that
Gε−G0 is not positive (semi)definite, while T3 + εS > T3. This gives numerical
evidence of the lack of monotonicy of a structured geometric mean. On the
other hand, computing the arithmetic mean A of T1, T2 and T3, one observes
also that the expected inequality A > G0 does not hold in this case.

3.3 The structured mean as solution(s) of a vector equa-
tion

We start from the Karcher mean which is obtained as the unique solution in Pn
of the matrix equation

m∑
i=1

log
(
XA−1

i

)
= 0. (3.4)

Equation (3.4) is obtained using the fact that f is differentiable and has a
minimum at the Karcher mean. Thus the Karcher mean verifies the condition
∇fX = 0, where ∇fX = 2X−1

∑m
i=1 log

(
XA−1

i

)
denotes the (Euclidean) gradi-

ent of f with respect to X (see [27]). We remark already that a different metric
will be studied in Section 4.3.

In the general case, the restriction of f to a structure given by σ(t) is in-
vestigated. For any minimum g (with corresponding σ(g)) not located at the
boundary of the parameter space, the gradient ∇(f ◦ σ)t of the function with
respect to t must be zero, so we are interested in the solutions of the vector
equation ∇(f ◦ σ)t = 0.

From the chain rule of derivation, one obtains that

∇(f ◦ σ)t =

∑
i,j

∂f(σ(t))

∂xi,j

dσi,j(t)

dts


s=1,...,q

= 0

which leads to the vector equation∑
i,j

(Γ(σ(t)))i,j
dσi,j(t)

dts
= 0, s = 1, . . . , q, (3.5)

where Γ(X) := 1
2∇fX .
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In the case where T is a linear space, the function σ(t) is linear and can be
written in matrix form as

vec(σ(t)) = Ut, U ∈ Rn
2×q,

so that equation (3.5) turns into

UT vec(Γ(σ(t))) = 0, Γ(X) = X−1
m∑
i=1

log
(
XA−1

i

)
. (3.6)

If σ(t) is chosen to be orthogonal, i.e. such that UTU = I, then UT coincides
with the Moore-Penrose inverse of U .

When T denotes the set of symmetric Toeplitz matrices, the parametrization
(3.1) leads to a matrix U having orthogonal columns. In fact one has UTU =
D = diag(n, 2(n− 1), 2(n− 2), . . . , 2). In particular, for n = 3 one has

UT =

 1 0 0 0 1 0 0 0 1
0 1 0 1 0 1 0 1 0
0 0 1 0 0 0 1 0 0

 .
For T being the set of symmetric tridiagonal matrices the parametrization

σ(t) =


t1 tn+1

tn+1 t2 tn+2

. . .
. . .

. . .

t2n−2 tn−1 t2n−1

t2n−1 tn


also leads to a matrix U having orthogonal columns. Moreover, UTU = diag(In, 2In−1).
For n = 3, e.g., one has

UT =


1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0

 .

4 Algorithms for structured geometric means in
the linear case

We will give two algorithms for computing structured geometric means when
they are characterized in terms of the solutions g of a vector equation, as, for
instance, in the linear case.

We first provide a general definition of a class of algorithms based on pre-
conditioned functional iteration, then we specialize to two algorithms given by
two different preconditioners.

The first, provided in Section 4.2 is derived by relying on the projection of the
gradient with respect to the Euclidean scalar product. The second, presented
in Section 4.3, is obtained through projection with respect to the Riemannian
metric of Pn decribed in Section 1.
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4.1 A preconditioned functional iteration and its conver-
gence

Throughout this section we assume that A1, . . . , Am ∈ U , where U = T ∩ Pn
and T is a linear space with a parametrization σ(t) such that vec(σ(t)) = Ut,
and D = UTU .

The structured geometric mean GU is the set of minimizers of the function
f(X;A1, . . . , Am) over U . These minimizers must be sought among the station-
ary points of the function f , that is, among the solutions to the vector equation
(3.6).

Therefore, a way to design algorithms for computing structured means GU
is to apply numerical techniques to solve the vector equation (3.6). We consider
a preconditioned Richardson-like iteration constructed in the spirit of [12]. Let
V (X) be a nonsingular and sufficiently differentiable matrix function and define

ϕ(t) = t− θS(t), S(t) = V (σ(t))−1UT vec(Γ(σ(t))),

tν+1 = ϕ(tν), ν = 0, 1, . . . ,
(4.1)

where θ is a parameter introduced to enhance convergence, V (σ(t)) is a pre-
conditioner and t0 is a given vector such that σ(t0) is positive. Observe that
the fixed points of ϕ(t) are the solutions of the vector equation (3.6) and if
convergent, the sequence tν converges to a solution of the vector equation (3.6).

In the following, given a matrix function f(X), where X = (xi,j) and f(X)
are n×n matrices, we denote by Jf (G) the n2×n2 Jacobian matrix of vec(f(X))
with respect to the variable vec(X) computed at X = G, similarly we denote
Jf◦σ(tG) the n2×q Jacobian of the composed function vec(f(σ(t))) with respect
to the variables (t1, . . . , tq) at t = tG. In this notation, the function in the
subscript as well as the variable between parentheses specify if the derivatives
are taken w.r.t. the matrix variable X or the vector variable t.

Observe that if V (σ(t)) is chosen as the Jacobian of UT vec(Γ(σ(t))), then
(4.1) coincides with Newton’s iteration.

If tG is a solution of (3.6) and if tν is sufficiently near to tG, then

tν+1 − tG = Jϕ(tG)(tν − tG) +O
(
‖tν − tG‖2

)
,

so that in order to study the local convergence of this sequence it is sufficient to
estimate the spectral radius ρ or any induced norm of Jϕ(tG) and determine θ
in such a way that ρ(Jϕ(tG)) < 1. Notice that the Jacobian of ϕ(t) at t = tG is
given by I−θK where K = JS(tG) is the Jacobian of S(t) at t = tG. Therefore,
if we can find a preconditioner V (t) such that K has real positive eigenvalues
with minimum and maximum eigenvalues κmin and κmax respectively, then the
choice θ = 2/(κmin +κmax) insures local convergence and provides the minimum
spectral radius of Jϕ(tG) given by

ρ(Jϕ(tG)) =
κmax − κmin

κmax + κmin
=
µ− 1

µ+ 1
< 1, µ = κmax/κmin.

Moreover, any values κ̂min 6 κ̂max such that κ̂min 6 κmin 6 κmax 6 κ̂max can
be used instead of κmin and κmax to determine a value θ̂ = 2/(κ̂min + κ̂max)
which insures convergence. Also notice that the closer µ to 1 the faster the
convergence of the iteration.
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Therefore our goal is to perform a spectral analysis of K and to find an
upper bound to the ratio µ = κmax/κmin, assuming that all the eigenvalues of
K are real positive. From the composition rule of derivatives one finds that

K = V (σ(tG))−1UTJΓ(G)U + JV (σ(tG))−1(σ(tG))UT vec(Γ(σ(tG)))

and since the UT vec(Γ(σ(tG))) = 0 then

K = V (σ(tG))−1UTJΓ(G)U. (4.2)

To evaluate JΓ(G), we recall that Γ(X) =
∑m
i=1X

−1 log(XA−1
i ) so that

it is sufficient to determine the formal expression of Jψ(G) for ψ(G,A) =
G−1 log(GA−1) for a generic A and then write JΓ(G) =

∑m
i=1 Jψ(G,Ai)(G).

In order to evaluate Jψ(G), we rely on the definition of Fréchet derivative of a
matrix function f(X) at X in the direction E

DfX [E] = lim
t→0

f(X + tE)− f(X)

t
=

d

dt

∣∣∣∣
t=0

f(X + tE).

In fact, the n2×n2 Jacobian matrix Jf (X) of the vector function vec ◦f ◦vec−1

at vec(X), is related to the Fréchet derivative by the following equation

vec(DfX [E]) = Jf (X) vec(E). (4.3)

We recall also the following properties of the Fréchet derivative [19] where
f, g are given matrix functions and ϕ(X) = X−1

D(fg)X [E] = DfX [E]g(X) + f(X)DgX [E], product rule,

D(f ◦ g)X [E] = Dfg(X)[DgX [E]], chain rule,

DϕX [E] = −X−1EX−1, inversion.

(4.4)

For the derivative of the exponential function we have (see [19, Eq. 10.17a])

Jexp(Y ) = (I ⊗ expY ) β
(
Y T ⊗ I − I ⊗ Y

)
, β(z) = (ez − 1)/z.

Therefore, since Jlog(X) = Jexp(Y )−1 for Y = logX, we find that

Jlog(X) = γ
(
log
(
XT
)
⊗ I − I ⊗ logX

) (
I ⊗X−1

)
, γ(z) = z/(ez−1). (4.5)

We are now ready to provide an explicit expression of the Fréchet derivative
of the function ψ(X,A) = X−1 log

(
XA−1

)
and of the Jacobian Jψ(X,A)(X).

Lemma 4.1. Let ψ(X) = X−1 log
(
XA−1

)
. Assume that A,X are positive.

For the matrix Jψ(X) such that vec (DψX [E]) = Jψ(X) vec(E) it holds that

Jψ(X) = −X−1 log
(
XA−1

)
⊗X−1 + (A−1 ⊗X−1)γ(W )(I ⊗AX−1),

W = log
(
XA−1

)
⊗ I − I ⊗ log

(
XA−1

)
,

with γ(z) = z/(ez − 1).
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Proof. Since h(X) := log
(
XA−1

)
is the composition of f(X) = log(X) and

g(X) = XA−1, we get by (4.4)

DhX [E] = DlogXA−1 [EA−1].

As ψ(X) is the product of f(X) = X−1 and h(X), (4.4) gives us

DψX [E] = −X−1EX−1 log
(
XA−1

)
+X−1DhX [E].

Combining the latter two equations yields

DψX [E] = −X−1EX−1 log
(
XA−1

)
+X−1DlogXA−1 [EA−1].

By using (4.3) and (1.6) we find that the matrix Jψ(X) representing DψX is
given by

Jψ(X) = −
(
X−1 log

(
XA−1

))T ⊗X−1 +
(
I ⊗X−1

)
Jlog

(
XA−1

) (
A−T ⊗ I

)
.

Replacing (4.5) in the equation above and using the fact that A = AT , X = XT

yields

Jψ(X) =− log
(
A−1X

)
X−1 ⊗X−1

+(I ⊗X−1)γ
(
log
(
A−1X

)
⊗ I − I ⊗ log

(
XA−1

)) (
A−1 ⊗AX−1

)
.

Using the fact that W log(V )W−1 = log
(
WVW−1

)
, the first term can be

written as −X−1 log
(
XA−1

)
⊗ X−1. The second term can be written as

(I ⊗ X−1)(A−1 ⊗ I)γ
(
log
(
XA−1

)
⊗ I − I ⊗ log

(
XA−1

)) (
I ⊗AX−1

)
, which

completes the proof.

Recall that Γ(X) =
∑m
i=1 ψ(X,Ai) and G−1

∑m
i=1 log(GA−1

i ) = 0, for G =
σ(tG). Then by Lemma 4.1, we obtain the following formula for the Jacobian
JΓ(σ(t)):

JΓ(G) = (I ⊗G−1)H(I ⊗G−1), H =

m∑
i=1

Hi

Hi = (A−1
i ⊗ I)γ

(
log(GA−1

i )⊗ I − I ⊗ log(GA−1
i )
)
(I ⊗Ai).

Moreover, by using the properties of the Kronecker product and the fact that
log(GA−1) = A1/2 log(A−1/2GA−1/2)A−1/2, we can write

Hi = (A
−1/2
i ⊗A1/2

i )γ(logMi ⊗ I − I ⊗ logMi)(A
−1/2
i ⊗A1/2

i ),

Mi = A
−1/2
i GA

−1/2
i .

From this expression it turns out that Hi is positive, and from (4.2) we find
that JS(tG) is the product of the matrix V (σ(tG))−1 and the positive matrix
UT (I ⊗G−1)

∑m
i=1Hi(I ⊗G−1)U .

Thus we may conclude with the following
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Theorem 4.2. The Jacobian K of the function S(t) in (4.2) at σ(tG) = G is
given by

K = V −1UT
(
I ⊗G−1

)
H
(
I ⊗G−1

)
U,

H =

m∑
i=1

Hi, Hi =
(
A
−1/2
i ⊗A1/2

i

)
γ (logMi ⊗ I − I ⊗ logMi)

(
A
−1/2
i ⊗A1/2

i

)
,

Mi = A
−1/2
i GA

−1/2
i ,

γ(z) = z/(ez − 1).

Moreover, the eigenvalues of K are the solutions of the equation

det
(
κV − UT (I ⊗G−1)H(I ⊗G−1)U

)
= 0.

4.2 An elementary preconditioner

The simplest choice for the preconditioner V (t) in (4.1) is V (t) = UTU = D.
This corresponds to projecting the gradient of the function f(X,A1, . . . , Ap) on
the set U according to the Euclidean scalar product. The problem det(κI−K) =
0 turns into the generalized q-dimensional symmetric eigenvalue problem

det
(
UT

(
κI − (I ⊗G−1)H(I ⊗G−1)

)
U
)

= 0.

This problem is the projection on the space spanned by the columns of U of the
problem det(νI − (I ⊗G−1)H(I ⊗G−1)) = 0 which has real positive solutions.

Now we recall the following result, valid for general positive matrices A,B,
which relates the generalized eigenvalues of the pair (A,B) to the ones of the
projected pair (UTAU,UTBU).

Lemma 4.3. Let A,B be n×n positive matrices and U an n×m matrix, then
the generalized eigenvalues of the pair (UTAU,UTBU) which solve the equation
det
(
UT (A − κB)U

)
= 0 are real positive and lie in between the maximum and

minimum eigenvalues λ of the pair (A,B), such that det(A−λB) = 0. Moreover,
the extreme eigenvalues λmin, λmax of the pair (A,B) are such that αmin/βmax 6
λmin 6 λmax 6 αmax/βmin, where αmin, αmax, βmin, βmax are the minimum and
maximum eigenvalues of the matrices A and B, respectively.

Proof. The condition det(λB−A) = 0 is equivalent to det(λI−B−1/2AB−1/2) =
0 which has real positive solutions since B−1/2AB−1/2 is positive. The remain-
ing part of the lemma follows from the fact that maximum and minimum eigen-
values of the larger and smaller problems coincide with maximum and minimum
value of the Rayleigh quotient xTAx/xTBx for x ∈ Rn, and for x ∈ span(U),
respectively.

A first consequence of the above lemma is that the extreme eigenvalues κmin

and κmax of K are in between the maximum and the minimum eigenvalue of
the n2-dimensional symmetric matrix Y = (I ⊗ G−1)H(I ⊗ G−1), so that the
ratio µ between the maximum and minimum eigenvalue of K is less than or
equal to the condition number µ(Y ) of the symmetric matrix Y . Moreover
since Y =

∑m
i=1 Yi with,

Yi = (A
−1/2
i ⊗A−1/2

i )(I⊗M−1
i )γ(logMi⊗I−I⊗logMi)(I⊗M−1

i )(A
−1/2
i ⊗A−1/2

i )
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one finds that k̂min :=
∑m
i=1 λ

(i)
min 6 κmin and k̂max :=

∑m
i=1 λ

(i)
max > κmax,

where λ
(i)
min and λ

(i)
max are the minimum and the maximum eigenvalues of Yi.

Moreover, from Lemma 4.3 and from the expression above for Yi it follows that

λ
(i)
min > γ

(i)
min/(α

(i)
max)2, λ

(i)
max 6 γ

(i)
max/(α

(i)
min)2, where α

(i)
min, α

(i)
max are the minimum

and the maximum eigenvalues of Ai, respectively, while γ
(i)
min and γ

(i)
max are the

minimum and maximum eigenvalues of (I⊗M−1
i )γ(logMi⊗I−I⊗ logMi)(I⊗

M−1
i ), respectively.
From the properties of the matrix function γ(·) and from the properties of

the Kronecker product one finds that the eigenvalues of the latter matrix can

be explicitly given in terms of the eigenvalues ν
(i)
r of the matrix Mi. In fact,

they coincide with 1

(ν
(i)
s )2

(log t
(i)
r,s)/(t

(i)
r,s − 1) where t

(i)
r,s =

ν(i)
r

ν
(i)
s

.

Since the function (log t)/(t − 1) is monotone decreasing its minimum and
maximum are

η
(i)
min = (logµ(i))/(µ(i) − 1),

η(i)
max = log(1/µ(i))/(1/µ(i) − 1) = µ(i)(logµ(i))/(µ(i) − 1),

for µ(i) = µ(Mi) the spectral condition number of Mi. Additionally, taking the
factor (ν(i))−2 into consideration gives

γ
(i)
min > η

(i)
min (ν(i)

max)−2,

γ(i)
max 6 η(i)

max (ν
(i)
min)−2 6 µ(i)(ν

(i)
min)−2,

where ν
(i)
min and ν

(i)
max represent respectively the minimum and maximimum

eigenvalue of Mi.
Therefore, we may conclude that the eigenvalues of K are bounded by

κ̃min :=
∑m
i=1 η

(i)
min/(ν

(i)
max α

(i)
max)2 and κ̃max :=

∑m
i=1 η

(i)
max/(ν

(i)
min α

(i)
min)2.

Observe that this bound gets worse when either some matrix is ill-conditioned

or if some matrix A
−1/2
i GA

−1/2
i is ill-conditioned. The latter condition cannot

occur if the matrices Ai do not differ much from G. The dependence of this
bound to the conditioning of Ai makes this algorithm very inefficient as long as
some Ai is ill-conditioned. This drawback is overcome in the next section where
we design a more effective preconditioner.

4.3 A preconditioner based on a differential geometric
viewpoint

The Karcher mean for positive matrices inherits a beautiful interpretation in
terms of differential geometry. It can be considered as the center of mass for a
well chosen inner product on the manifold of positive matrices. In this section
and in Section 5 we consider two approaches inspired by this idea. For more
information we refer to the overview in [22], and the articles [13,18,30–32].

When considering a manifold optimization approach, the intersection U of
a linear space T with the manifold of positive matrices Pn can be viewed as
a Riemannian submanifold of Pn itself, which in turn is called the enveloping
space. This entails that the inner product from this enveloping space is induced
on the submanifold. An immediate consequence is that the gradient of the cost
function for the submanifold is given by the orthogonal projection (with respect
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to the inner product) of the gradient for the enveloping space. Similar to the
space of symmetric matrices being the tangent space to the manifold of positive
matrices, the intersection V of the linear space T with the space of symmetric
matrices is the tangent space to U .

First consider the manifold of positive matrices endowed with the Euclidean
inner product gX(A,B) = tr(AB), with A and B symmetric, and X a positive
matrix. Note that even though this inner product gX is independent from X, the
subscript notation is kept for consistency. In this case, the orthogonal projection
of a symmetric matrix A onto T gives a matrix T , with

vec(T ) = U
(
UTU

)−1
UT vec(A),

or vec(T ) = Ut, with

t =
(
UTU

)−1
UT vec(A). (4.6)

The expression for the gradient of the Karcher cost function, corresponding
to the Euclidean inner product, is known for the manifold of positive matrices
and is given by

grade f(X;A1, . . . , Am) = 2X−1
m∑
i=1

log
(
XA−1

i

)
. (4.7)

The gradient naturally defines the direction of steepest ascent. Nevertheless,
the gradient lies in the tangent space, and to build an algorithm from this a
practical way is to follow the gradient and then go back to the manifold through
a suitable function, called retraction. The precise definition of a retraction,
together with general theoretical assumptions it should satisfy, can be found
in [1]. Figure 2(a), graphically illustrates the concept of a retraction, where
a vector ξX in the tangent space TXPn of the positive matrices is retracted
to a point RX(ξX) residing on the manifold Pn. On a manifold, the classical

X ξX

RX(ξX)

TXPn

Pn
(a) Retraction. (b) Steepest Descent.

Figure 2: Graphical representation of a retraction and steepest descent flow.

steepest descent algorithm is graphically depicted in Figure 2(b). The thin red
lines depict the contour lines, the blue arrows the gradients, and the green curves
the retractions to the manifold.

Observe that for Pn immersed in the set of symmetric matrices, the tangent
space at a point is the whole set of symmetric matrices. So one can consider
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the basic retraction RX(A) = X + A for a sufficiently small symmetric matrix
A.

Entering now the gradient (4.7) in projection (4.6) and applying a gradient
descent method with the basic retraction RX(A) = X +A, we arrive exactly at
the Richardson-like algorithm for finding the fixed points of function (4.1).

However, since the function f to be minimized is defined through the distance
(1.2), it is more natural to consider the manifold of positive matrices endowed
with the inner product gX(A,B) = tr

(
AX−1BX−1

)
, with A, B and X as

before. In this case, the gradient for the enveloping space is known to be

gradn f(X;A1, . . . , Am) = 2X

m∑
i=1

log
(
A−1
i X

)
.

Note the difference with (4.7).
The orthogonal projection T onto the intersection V (of T and the space

of symmetric matrices) of this gradient, with respect to the Riemannian scalar
product, can be found as the solution of the equations

gradn f(X) = T + S,

gX(S,K) = tr
(
SX−1KX−1

)
= 0, for every K ∈ V.

Writing again vec(T ) = Ut, we find in parameter space

t =
(
UT

(
X−1 ⊗X−1

)
U
)−1

UT
(
X−1 ⊗X−1

)
vec(gradn f(X)). (4.8)

The factor UT
(
X−1 ⊗X−1

)
U is recurring and is abbreviated as DX , where

the subscript points to the intrinsic variable X. Observe that this Riemannian
orthogonal projection can be seen as a Euclidean oblique projection where the
two bases of the subspace are the columns of U and (X−1⊗X−1)U , respectively.

Using this expression, it is possible to define another gradient descent method
where we are now searching the fixed points of the function

ϕ(t) = t− θD−1
σ(t) U

T
(
σ(t)−1 ⊗ σ(t)−1

)
vec
(
σ(t)

m∑
i=1

log
(
A−1
i σ(t)

))
. (4.9)

Relying on (1.6) to incorporate the Kronecker product into the vectorization,
we find that (σ−1 ⊗ σ−1) vec(σ

∑m
i=1 log(A−1

i σ)) = vec(
∑m
i=1 log(A−1

i σ)σ−1).
Applying a property of the matrix logarithm we may rewrite the latter expres-
sion as vec(σ−1

∑m
i=1 log(σA−1

i )). This way, equation (4.9) takes the form of
(4.1) with

V = UT (G−1 ⊗G−1)U.

To analyze the convergence of (4.1) with the choice V = UT (G−1 ⊗G−1)U ,
we have to analyze the eigenvalues of the Jacobian K = JS(tG) of S(t) in (4.1)
where the equation det(κI −K) = 0 takes the form of the following generalized
eigenvalue problem

det
(
UT

(
κ(G−1 ⊗G−1)− (I ⊗G−1)H(I ⊗G−1)

)
U
)

= 0. (4.10)

Since the two matrices in equation (4.10) are positive, in view of Lemma
4.3, the solutions of this generalized eigenvalue problem are real positive and
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are located in between the maximum and the minimum solution of the larger
problem

det
(
λ(G−1 ⊗G−1)− (I ⊗G−1)H(I ⊗G−1)

)
= 0,

which in turn can be rewritten as a standard eigenvalue problem

det
(
λI − (G1/2 ⊗G1/2)(I ⊗G−1)H(I ⊗G−1)(G1/2 ⊗G1/2)

)
= 0.

Since H =
∑m
i=1Hi, and the matrices Hi are real symmetric, the eigenvalues of

this problem are located in between the sum of the minimum and the sum of
the maximum eigenvalues of each subproblem

det
(
λI − (G1/2 ⊗G1/2)(I ⊗G−1)Hi(I ⊗G−1)(G1/2 ⊗G1/2)

)
= 0, (4.11)

that is det(λ(G−1⊗G)−Hi) = 0, or equivalently det(λI−(G⊗I)Hi(I⊗G−1)) =

0. The matrix in the latter expression is similar to (A
−1/2
i ⊗A−1/2

i )(G⊗I)Hi(I⊗
G−1)(A

1/2
i ⊗A1/2

i ), which, using the expression of Hi provided in Theorem 4.2,
can be written as

(Mi ⊗ I)γ(logMi ⊗ I − I ⊗ logMi)(I ⊗M−1
i ).

This way, the eigenvalues of (4.11) can be explicitly given in terms of the eigen-

values ν
(i)
r of the matrix Mi. In fact, they coincide with the t

(i)
r,s(log t

(i)
r,s)/(t

(i)
r,s−1)

where t
(i)
r,s =

ν(i)
r

ν
(i)
s

.

Since the function t(log t)/(t− 1) is monotone, for the minimum and maxi-
mum solution to (4.11) we have

η
(i)
min = (1/µ(i)) log(1/µ(i))/(1/µ(i) − 1) = (logµ(i))/(µ(i) − 1),

η(i)
max = µ(i)(logµ(i))/(µ(i) − 1),

respectively, for µ(i) = µ(Mi) the spectral condition number of Mi. There-

fore, we may conclude that the eigenvalues of K are in between
∑m
i=1 η

(i)
min and∑m

i=1 η
(i)
max. This way, we find for the optimal value of θ and for the optimal

spectral radius the estimates

θ =
2∑m

i=1
µ(i)+1
µ(i)−1

logµ(i)
,

ρ =

∑m
i=1 logµ(i)∑m

i=1
µ(i)+1
µ(i)−1

logµ(i)
.

It is interesting to point out that in this case the convergence speed is related
neither to the condition number of the geometric mean G nor of the matrices
Ai but is related only to the relative distances of G from each Ai measured by

the quantities µ(i) = µ(Mi), Mi = A
−1/2
i GA

−1/2
i . The closer they are to 1 the

faster the convergence. Therefore, if the matrices to average are not much far
from each other so that the quantities µ(Mi) are close to 1, then the optimal
value of θ is close to 1/m and a very fast convergence is expected. This analysis
is confirmed by the numerical experiments.
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4.4 The case of Toeplitz matrices

From the computational point of view, at each step of the iteration (4.1) one
has to compute UT vec(Γ(σ(t))), and then solve a linear system with the matrix
V (σ(t)). The former computation, based on (3.6), requires O(mn3) arithmetic
operations (ops), while the cost of the latter depends on the structure of V (σ(t)).

In this section we examine the case where U is the class of symmetric Toeplitz
matrices and where σ(t) associates t with the Toeplitz matrix having as first
column t. We describe a way to make the algorithm of Section 4.3 more efficient.

Indeed, for the iteration analyzed in Section 4.2, V is the diagonal matrix
with diagonal entries (n, 2n − 2, ..., 2) and the cost of solving a system with
matrix V amounts to n divisions.

The iteration examined in Section 4.3 has a higher convergence speed but at
each step an n× n system with V = UT (X−1 ⊗X−1)U must be solved, where
X is a symmetric positive definite Toeplitz matrix.

We split the computation in two steps. In the first, the n2 entries of V are
computed, in the second step a standard O(n3) ops linear system solver is used.
Concerning the first step we discuss two approaches.

In both approaches the inverse of the Toeplitz matrix X needs to be com-
puted, which can be efficiently done using the Gohberg Semencul formula [9].
Here, vectors v1, v2, v3, v4 are determined such that X−1 = L(v1)L(v2)T −
L(v3)L(v4)T , where L(v) is the lower triangular Toeplitz matrix whose first col-
umn is v. From these, the n2 entries of X−1 can be found. The overall cost is
O(n2) ops.

1. As a first attempt, the entries of V are computed in a straightforward
manner using the entries of X−1:

V =


γ1,1 2γ1,2 · · · 2γ1,n

2γ1,2 2γ2,2 · · · 2γ2,n

...
...

. . .
...

2γ1,n 2γ2,n · · · 2γn,n

 ,
where

γ1,j =

n∑
i=1

n−j+1∑
k=1

(X−1)i,k(X−1)i,k+j−1,

γj,p =

n−j+1∑
i=1

n−p+1∑
k=1

(
(X−1)i,k(X−1)i+j−1,k+p−1 + (X−1)i,k+p−1(X−1)i+j−1,k

)
.

The cost of this approach in terms of arithmetic operations is of the order
O(n4).

2. In the second approach, we show that the cost of this computation can
be kept at the level of O(n3 log n) ops by combining the Gohberg Se-
mencul formula and the the FFT. For a given i, the product vector
wi = (X−1 ⊗ X−1)Uei, where ei is the ith vector of the canonical ba-
sis, is such that wi = vec(X−1EiX

−1), with Ei being the symmetric
Toeplitz matrix whose first column is ei. Therefore, compute first the
columns of EiX

−1 by performing O(n2) additions, and then multiply
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X−1 by these columns, stacking the results to obtain wi. This com-
putation is performed in O(n2 log n) operations for each i by using the
Goghberg Semencul formula, since the multiplication of a lower triangular
Toeplitz matrix and a vector can be performed in O(n log n) operations
by means of the FFT [9]. Therefore the overall computation of this stage
for i = 1, . . . , n is O(n3 log n) ops. Finally, compute for any i the vector
UTwi for the cost of O(n2) additions.

The performance of these methods will be compared in Section 6.

5 Kähler metric mean for Toeplitz matrices

The Karcher mean of positive definite matrices has the specific interpretation of
being the barycenter of the given matrices for the natural metric (1.2) on this
manifold. Hence there are in a certain sense two possible generalizations. On
the one hand, try to generalize the geometric mean concept, or, on the other
hand, try to generalize the barycenter concept. Previously we focused on an
extension of the geometric mean. Hereafter we focus on the positive definite
Toeplitz matrix manifold itself, denoted by Tn, and consider a barycenter in
this case. This mean can not be called a geometric mean in the sense of satisfy-
ing all required properties, but through its intuitive definition, many desirable
properties could arise.

The concept of a barycenter is not restricted to the specific metric used
to define the Karcher mean. For example, when the set Tn is endowed with
the classical Euclidean inner product, the resulting barycenter is nothing else
than the arithmetic mean. Using a probabilty argument, in [3, 4] a metric on
Tn is introduced, called the Kähler metric. This metric results in a complete,
simply connected manifold with non-positive sectional curvature everywhere, or
a Cartan–Hadamard manifold. Thus, by [15, 23], existence and uniqueness are
guaranteed for the barycenter with respect to this metric.

We will recall some known facts about the Kähler metric, and then we will
give an explicit formula for the barycenter in the real case and a numerical
procedure to compute the barycenter in the complex case.

To construct the Kähler metric, a Toeplitz matrix is first transformed to an
n-tuple (P0, µ1, . . . , µn−1) in R∗+ × Dn−1, with R∗+ the set of strictly positive
real numbers and D the set of complex numbers of modulus less than one.
This transformation, denoted as ζ(T ) = [PT , µT,1, . . . , µT,n−1]

T
, is performed

as follows:

PT = t0, µT,j = (−1)j
det(Sj)

det(Rj)
,

with t0 the main diagonal element of T , Rj the principal submatrix of size j of
T (the upper left j×j submatrix) and Sj obtained by shifting Rj down one row,
or equivalently, by removing the first row and last column of Rj+1 (the inverse
transformation can be found in [34]). In what follows, we use this one-to-one
relation between the Toeplitz matrices and the corresponding n-tuple, and when
clear by the context, we will neglect the distinction and identify one with the
other.

For X and Y being the transformations of two positive Toeplitz matrices
X = [PX , µX,1, . . . , µX,n−1]

T
and Y = [PY , µY,1, . . . , µY,n−1]

T
, the metric is
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given by

d(X,Y ) =

(
nσ(PX , PY )2 +

n−1∑
j=1

(n− j)τ(µX,j , µY,j)
2

)1/2

,

σ(PX , PY ) =
∣∣∣log

(PY
PX

)∣∣∣, τ(µX,j , µY,j) = atanh

(∣∣∣ µY,j − µX,j
1− µX,jµY,j

∣∣∣) ,
where atanh(z) = 1

2 log
(

1+z
1−z
)
.

The barycenter of the positive Toeplitz matrices Ti, for i = 1, . . . ,m, with re-
spect to the Kähler metric will be denoted byB(T1, . . . , Tm) = [PB , µB,1, . . . , µB,n−1]T .
It is obtained in this transformed space by minimizing the function

f(X) =

m∑
i=1

d2(X,Ti)

over R∗+×Dn−1. Notice that the problem of minimizing f(X) can be decoupled
into the problems of minimizing ϕ0(x) =

∑m
i=1 σ(x, PTi

)2 over R∗+, and the n−1
scalar functions

ϕj(z) =

m∑
i=1

τ(z, µTi,j)
2, j = 1, . . . , n− 1

over D. The minimum of ϕ0(x) is easily obtained as PB = (PT1
· · ·PTm

)1/m

by solving the equation ∇ϕ0(x) = 0. The minimum of ϕj(z) is nothing else
than the barycenter of µT1,j , . . . , µTm,j with respect to the customary Poincaré
metric on the unit disk and is the point where the gradient

∇ϕj(z) = 2(|z|2 − 1)

m∑
i=1

sign(ci,j) atanh(|ci,j |), ci,j =
µTi,j − z
1− zµTi,j

, (5.1)

equals zero.
In the real case we are able to find an explicit expression for this barycenter

as well, since sign(c) atanh(|c|) = atanh(c) and after some manipulations we get

µX,j = C
((
C(µT1,j) · · · C(µTm,j)

)1/m)
,

where C(z) = (1− z)/(1 + z) is the Cayley transform.
In the complex case we were not able to find such an explicit formula but

a quick numerical method can be devised using a gradient descent algorithm.
We recall that the tangent space to the Poincaré disk can be identified with the
complex plane and thus for a sufficiently small tangent vector v ∈ C, one can
consider the retraction Rz(v) = z+v, which captures the fact that the manifold
is an open subset of the complex plane. The resulting algorithm to find the
barycenter of µ1, . . . , µn ∈ C is given by the iteration

zk+1 = zk+tkvk, vk = (1−|zk|2)

n∑
i=1

sign(ci,k) atanh(|ci,k|), ci,k =
µi − zk
1− zkµi

,

(5.2)
for a suitable initial value z0 and a sufficiently small steplength tk.
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Another possibility is to consider the retraction

Rz(v) =
z + eiθ + (z − eiθ)e−s

1 + zeiθ + (1− zeiθ)e−s
, θ = arg v, s =

2|v|
1− |z|2

,

which corresponds to moving along the geodesics of the Poincaré disk. The
corresponding gradient descent method is

zk+1 = Rzk(tkvk),

with the same vk as (5.2).

5.1 Properties of the Kähler barycenter

Regarding the properties of this barycenter, it is easily seen that it is permuta-
tion invariant, repetition invariant and idempotent (this holds for any barycen-
ter). Moreover, for any α > 0, it holds that the transformed values of αT are
[αPT , µT,1, . . . , µT,m]T and from the explicit expression of PB in the real case
we get that B(αT1, αT2, . . . , αTm) = α1/mB(T1, . . . , Tm), that is, homogeneity
holds.

Unfortunately, this new barycenter does not verify other properties as shown
by the following example.

Example 5.1. From the explicit expression for the mean in the real case we
get a simple formula for the Kähler barycenter of two 2× 2 matrices

T1 =

[
x1 y1

y1 x1

]
, T2 =

[
x2 y2

y2 x2

]
,

namely

B(T1, T2) =
√
x1x2

[
1 a−b

a+b
a−b
a+b 1

]
, with

{
a =

√
(x1 + y1)(x2 + y2)

b =
√

(x1 − y1)(x2 − y2)
.

Now consider the following matrices

T1 =

[
2 1
1 2

]
, T̃1 =

[
4 −1
−1 4

]
, T2 =

[
2 −1
−1 2

]
,

with T̃1 > T1. By symbolic computation, one gets that

B(T̃1, T2) =

[
2
√

2
√

2(
√

5− 3)√
2(
√

5− 3) 2
√

2

]
6> B(T1, T2) =

[
2 0
0 2

]
,

in fact one eigenvalue of B(T̃1, T2)−B(T1, T2) is λ =
√

10− 2−
√

2 < 0. Thus,
we have proved that the Kähler barycenter is not monotonic. Moreover,

B(T1, T2) 6= (T1T2)1/2 =

[ √
3 0

0
√

3

]
,

and hence the Kähler barycenter does not coincide with the Karcher mean for
circulant matrices. In particular, it is not a structured geometric mean as defined
in Section 1.

Observe that in the previous example B(T1, T2) surprisingly coincides with
the arithmetic mean of T1 and T2. It is not difficult to construct examples where
it is not true that B(T1, T2) 6 (T1 + T2)/2 as should be for a geometric mean.
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6 Numerical experiments

In this section, the different algorithms proposed in Sections 4.2 and 4.3 will
be compared w.r.t. speed and accuracy. The numerical experiments are con-
fined to Toeplitz matrices, because of applicational interest in computing their
structured matrix mean [24]. These matrices are constructed randomly, but
with chosen condition number, using the technique described in [16]. Perfor-
mance, accuracy and computational distance are subjects of the forthcoming
investigations. For clarity we remind the reader that the Richardson-iteration
corresponds to a projection technique on a manifold, with the classical Euclidean
inner product. For all algorithms, the stopping criteria is based on checking the
relative size of the gradient and on comparing two consecutive iteration points.

It is worth pointing out that, in spite of the lack of the proof of uniqueness
for structured geometric mean in the Toeplitz case, for any fixed set of data
matrices used in our experiments, any initial value and any algorithm yielded
always the same structured geometric mean. This suggests the conjecture that
in the Toeplitz case there is a unique structured geometric mean.

We have also compared the structured geometric mean obtained by our
algorithms with the Kähler metric mean, getting in most experiments a relative
difference of the order 10−1, which indicates that these two means are relatively
far from each other.

6.1 The projection methods

Performance The performance of the projection methods explained in Section
4 can be compared by looking at both the number of iterations the methods
require and the total amount of computational time they need.

In Figure 3(a), the evolution of the gradient over the iterations is displayed
for both techniques (and hence also the number of iterations). Using the pro-
jection method introduced in Section 4.3 gives a faster decrease of the gradient
and results in fewer iteration steps. The number of iterations remains almost
constant for this method as the size of the matrices increases. For the projection
technique from Section 4.2 on the other hand, this number starts to increase
when the matrix size grows.

However, comparing expression (4.6) and (4.8), it can be seen that the second
one is computationally more expensive and hence the advantage of requiring
fewer iterations could be nullified. Therefore, Figure 3(b) displays the total
computational time of both methods for varying sizes of the matrices (both
approaches from Section 4.4 are shown). The two methods based on Section
4.3 maintain an advantage despite their larger computational cost per iteration.
Note that for the largest matrix size the computational time of the Euclidean
based method appears less than one of the other methods. However, this is
caused by the increasing number of iterations required by this Euclidean method.
Consequently, the maximum number of iterations is reached before convergence
and the algorithms is terminated prematurely. Concerning the operation count
in Section 4.4, the advantage of the method based on FFT starts to appear
when the matrices become sufficiently large.

Accuracy In order to analyze the accuracy of the projection methods, we im-
plement a high precision version of the first algorithm in Section 4.4 using the
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Figure 3: Comparison of the projection methods for Toeplitz matrices. In the
legends, Euclidean indicates the method of Section 4.2, Riemannian indicates
the first approach described in Section 4.4, and Riem-FFT the second.

vpa functionality of Matlab. The relative distance, based on the intrinsic dis-
tance (1.2), between this high precision computation and the result of the actual
algorithms is shown in Figure 4. For small condition numbers, the accuracy of
all methods is similar in average, but as the condition of the matrices becomes
worse, the accuracy of the projection method based on Euclidean geometry
deteriorates much faster than that of the method based on the Riemannian ge-
ometry. This first method even fails to converge when the condition number of
the matrices becomes significantly large. The accuracy of the two approaches
in Section 4.4 is similar and deteriorates steadily as the condition numbers of
the matrices increase.

7 Conclusions

In this article a generalization of the Karcher mean for positive definite matri-
ces to structured positive definite matrices was proposed. Besides a theoretical
investigation and adaptation of the desired properties of such a mean, algo-
rithms were proposed. In the design of the algorithms, two trajectories were
put forward, one relying mostly on linear algebra, and one based on differential
geometry. A convergence analysis has been performed showing the superiority of
the algorithm based on differential geometry. Numerical experiments compared
the accuracy and speed of the various techniques and confirmed the theoretical
analysis.

In the case of Toeplitz matrices, we have considered also the Kähler metric
mean [4], whose properties have been investigated, providing an explicit expres-
sion in the real case and a quick algorithm in the complex case. For Toeplitz
matrices, both the new structured geometric mean and the Kähler metric mean
have not completely satisfying properties, in fact they are nor monotone, neither
do they satisfy the arithmetic-geometric inequality. We wonder if it is possible
to provide a definition of geometric mean for Toeplitz matrices which behaves
well with respect to the ordering of positive matrices.
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